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SUMMARY

This study examines theoretically the development of early transients for axisymmetric �ow of a thin
�lm over a stationary cylindrical substrate of arbitrary shape. The �uid is assumed to emerge from an
annular tube as it is driven by a pressure gradient maintained inside the annulus, and/or by gravity in
the axial direction. The interplay between inertia, annulus aspect ratio, substrate topography and gravity
is particularly emphasized. Initial conditions are found to have a drastic e�ect on the ensuing �ow. The
�ow is governed by the thin-�lm equations of the ‘boundary-layer’ type, which are solved by expanding
the �ow �eld in terms of orthonormal modes in the radial direction. The formulation is validated upon
comparison with the similarity solution of Watson (J. Fluid Mech 1964; 20:481) leading to an excellent
agreement when only 2–3 modes are included. The wave and �ow structure are examined for high and
low inertia. It is found that low-inertia �uids tend to accumulate near the annulus exit, exhibiting a
standing wave that grows with time. This behaviour clearly illustrates the di�culty faced with coating
high-viscosity �uids. The annulus aspect is found to be in�uential only when inertia is signi�cant; there
is less �ow resistance for a �lm over a cylinder of smaller diameter. For high inertia, the free surface
evolves similarly to two-dimensional �ow. The substrate topography is found to have a signi�cant
e�ect on transient behaviour, but this e�ect depends strongly on inertia. It is observed that the �ow of
a high-inertia �uid over a step-down exhibits the formation of a secondary wave that moves upstream
of the primary wave. Gravity is found to help the �lm (coating) �ow by halting or prohibiting the wave
growth. The initial �lm pro�le and velocity distribution dictate whether the �uid will �ow downstream
or accumulate near the annulus exit. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study focuses on the in�uence of inertia, annulus aspect ratio, substrate topography
and gravity during the early stages of �ow development of a �uid �lm emerging from an
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annular duct (die), and �owing on a solid and stationary axisymmetric substrate of arbitrary
shape. The evolution of thin-�lm �ow involves typically three distinct stages that are usually
identi�ed after �ow inception. The �rst stage is the formation of a wave and its propagation
near the source, the second is the free propagation of the wave on the open substrate and
the third is the development of the steady-state �ow that will �nally lead to the formation
of the steady (but not necessarily uniform) �lm thickness. In this study, the modelling and
simulation of the three stages are performed for axisymmetric �ow in order to examine the
intricate wave and �ow structures that develop. The problem thus consists of obtaining the
shape of the evolving free surface and the �ow �eld inside the moving domain, as the �uid
emerges from the annulus. The �ow is induced by the pressure gradient inside the annulus,
where fully developed Poiseuille conditions are assumed to prevail, and/or gravity in the axial
direction.
Generally, most studies on thin-�lm �ow involve either gravity- or surface-tension-driven

�ow, or both [1–6]. Rarely is pressure-driven �ow contemplated. The �ow of a falling �lm
on an inclined or vertical wall has been extensively investigated [2; 7–12]. Some studies
on surface-tension-driven �ows include [5; 13]. Although the literature abounds with two-
dimensional studies, other geometries have also been considered. In particular, axisymmetric
�ows have been examined, including radial spreading [14], spin coating [3; 11; 13; 15–17],
and �ow over a cylinder [18–20]. Most of the theoretical work has concentrated on Newtonian
�uids, and, to a much lesser extent, on non-Newtonian �uids [15; 21–25]. The e�ect of other
external (body) forces has also been considered. Gorla and Byrd examined the e�ect of an
electrostatic �eld on the �ow of a �lm, its stability, and eventual rupture [26]. The action of
an external air jet on thin �lms was considered [16; 27–29].
The e�ect of substrate topography was recently considered by Kalliadasis et al. on the steady

thin-�lm �ow over trenches and mounds [30]. Their study was limited, however, to surface-
tension dominated inertialess �ow. They found that the free surface develops a ridge right
before the entrance to the trench or exit from the mound, and that the ridge can become large
for steep substrate features of signi�cant depth. Earlier, Stillwagon and Larson investigated
this problem experimentally [31]. They measured the changes in thickness of silicon oil �lms
at the centre of holes and trenches of a silicon substrate using a non-contact interferometric
technique. In that case, the �ow was also surface-tension dominated, and inertia e�ect was
negligible. Later, Stillwagon and Larson considered the levelling of thin �lms over uneven
substrates during spin coating [32]. This problem was also considered by Spaid and Homsy
for an Oldroyd-B �uid [15]. More recently, Ruschak and Weinstein examined the gravity-
driven �ow of a thin �lm over a round-crested weir [33]. Similarly to the present problem,
surface-tension e�ect was neglected, and inertia e�ect was included. The equations were depth
averaged in the radial direction. Steady-state pro�les of the free surface were obtained as
function of the Reynolds number and weir diameter. Du�y and Wilson used the lubrication
approximation to examine the steady two-dimensional �ow on the outside of a rigid circular
rotating cylinder. Inertia as well as surface-tension e�ects were neglected [34].
Transient �ow studies are often limited to the linear destabilization of the �lm or to small-

amplitude motion [1; 8; 23]. Studies on �nite-amplitude �lm deformation include the spreading
in spin coating [13; 16], the evaporation of liquid �lms [35], the deformation of long vapour
bubbles due to the evaporation from the surrounding liquid [36], the instability and breakup
of long annular liquid layers [19; 20], evolution of a falling �lm [2; 3; 10; 12; 18; 29; 37; 38].
Of closer relevance to the present problem, is the simulation of Kalliadasis and Chang, who
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examined the critical conditions for the formation of solitary waves during the coating of
vertical �bres [18]. The long-wave equation was solved using a matched asymptotic expansion,
which joins the capillary outer region of the large solitary wave to the thin-�lm inner region.
Inertia was neglected. Nguyen and Balakotaiah proposed an integral boundary-layer model for
a free falling �lm [12].
The interplay between inertia and other forces in thin-�lm �ow has been examined in the

literature. Szeri reviewed some of the attempts made to extend the classical Reynolds equation
to include the e�ect of �uid inertia in lubrication theory [21]. In a review article on �bre
coating, Qu�er�e discussed the e�ect of inertia on rapid coating and droplet expulsion [39].
Tuck and Bentwich determined the steady two-dimensional �ow between sliding sheets at
�nite Reynolds number [40]. The �ow was obtained approximately on the basis of an ad
hoc linearization of the convective term. More recently, a similar approximation was used
by Wilson and Du�y, who examined the e�ect of inertia for a �uid �owing in a channel of
arbitrary cross section [34]. Earlier, Watson examined the steady laminar and turbulent radial
spread of a liquid jet over a horizontal plane, including the special case of two-dimensional
�ow [14]. For a large distance from the source, a similarity solution of the laminar boundary-
layer equations was sought. In particular, Watson found that for two-dimensional �ow, the
steady (dimensionless) shape of the free surface is given by �s=�x=

√
3Re=1:81x=Re, where

x is the distance from the source, and Re is the (modi�ed) Reynolds number. The steady
surface pro�le was obtained in the absence of gravity and surface tension. It constitutes an
important limit form, which will be compared against the present formulation. Khayat and
Welke examined the two-dimensional transient �lm �ow [41]. Comparison with Watson’s
similarity solution led to good agreement.
Although the thin-�lm formulation reduces the pressure to its hydrostatic part, thus eliminat-

ing the momentum equation in the transverse (vertical or radial) direction from the problem,
the dimension of the problem remains the same as the original equations. Benney’s long-wave
(LW) approximation is often used [42], especially for small-inertia �ow. At high Reynolds
number, inertia is better accounted for through the ‘boundary-layer’ (BL) approximation,
which includes the e�ect of transverse �ow. Salamon et al. carried out a �nite element so-
lution of the full Navier–Stokes equations for the �ow in a falling �lm [43]. Comparison
of their results with those based on the LW approximation, indicates that serious limitations
exist in the validity of the LW equation. The major di�erence between the original Navier–
Stokes equations and the BL equations is the hydrostatic variation of the pressure across
the �lm depth. As a result, only the transverse momentum equation is eliminated, but the
convective terms are retained in the remaining equations, and the number of boundary con-
ditions is reduced. However, the solution of the BL equations remains essentially as di�cult
to obtain as that of the Navier–Stokes equations [38]. A depthwise integration of the mo-
mentum equation(s) in the lateral direction(s) is usually performed by assuming a self-similar
semi-parabolic �ow pro�le in the transverse direction, as was proposed [44]. Although the
depth-averaged equations are only of second order in time, they yield plausible results, at
least qualitatively, but they remain fundamentally questionable because of the semi-parabolic
assumption [8; 38]. A measure of the error involved may be inferred by computing the free-
surface pro�le in the absence of gravity and surface tension, and comparing it to Watson’s
result given above. From the literature, the steady-state pro�le based on the semi-parabolic
pro�le is easily found to be �s=2:5x=Re [2]. The parabolic approximation is widely used
in the literature, and its validity was established experimentally by Alekseenko et al. [7].
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However, it is generally argued that the parabolic approximation is valid at low or mod-
erately low Reynolds number, and provided the waves are far from the entry [45; 46]. In
addition to high-inertia �ow, other �ow conditions that restrict the range of validity of the
semi-parabolic pro�le include the presence of end e�ects, turbulent �ow and (most likely)
non-linear e�ects stemming from shear-thinning or viscoelastic e�ects [47]. A more rigorous
approach for the solution of the thin-�lm equations becomes almost as di�cult to achieve
as for the original Navier–Stokes equations. Hence, conventional solution techniques such as
the �nite element or �nite di�erence methods are not suitable given the rapid spatio-temporal
variation of the �ow �eld in the presence of steep waves. Frequent remeshing, and an e�ec-
tive implicit time-stepping scheme are required. Ruyer–Quil and Manneville used a three-term
expansion of the �ow �eld in the transverse direction, and obtained three coupled equations
for the surface height, �ow rate and stress [11]. Takeshi examined the �ow in a falling
�lm at moderate Reynolds number and large but �nite Weber number, using a regulariza-
tion method, which consists of a combination of the Pad�e approximation and the long-wave
expansion [38].
In this study, a uni�ed spectral approach is proposed to model the pressure- and/or gravity-

driven axisymmetric �ow of a thin �lm over a substrate of arbitrary shape. Given the impor-
tance of inertia upon inception, the BL formulation rather than Benney’s LW approximation
[42] will be used. The �ow equations are �rst mapped over the rectangular domain, and a
formal expansion of the velocity �eld in terms of orthonormal basis functions is introduced for
the �ow �eld. The formulation closely follows and generalizes that of Zienkiewicz and Hein-
rich, which emphasizes water �ow over extended areas [48]. There are, however, three major
simplifying assumptions adopted by Zienkiewicz and Heinrich [48], which will be relaxed in
the present study. First, the radial (transverse) velocity component will not be neglected in
the momentum equation. Second, despite the long-wave approximation, the variation in sur-
face height will not be neglected with respect to time and space in the momentum equation.
Third, a spectral approach is proposed, whereby the �ow �eld is expanded in terms of mixed
trigonometric/hyperbolic orthonormal functions, instead of simple polynomials, to represent
the �ow in the transverse direction. The Galerkin projection method is used to generate the
equations that govern the expansion coe�cients. A Lagrangian time-stepping implicit �nite
di�erence approach is implemented for the solution of the equations that govern the expan-
sion coe�cients, coupled with a Runge–Kutta integration scheme along the �ow direction.
The spectral method, and, particularly, the low-dimensional description of �ow, has emerged
as an e�ective alternative to conventional methods [49]. Although this method has predomi-
nantly been used for simple �ow, recent developments have included complex geometry [50],
and complex �uids [51–53].
Unlike the depth-averaging method, the proposed spectral methodology becomes particularly

suited for the early onset of wave motion near the annulus exit. Assessment of convergence
and accuracy is carried out by adopting di�erent truncation levels, varying the time increment
and mesh size and monitoring the conservation of mass (volume). The overall validity of the
basic approach is established by comparing the two-dimensional steady-state solution against
the similarity solution of Watson [14], and the solution based on the parabolic pro�le and
the depth-averaging procedure [2]. The problem thus consists of obtaining the shape of the
evolving free surface and the �ow velocity inside a moving domain, as the �uid emerges
from the annulus. The �ow is induced by the pressure gradient inside the annulus, where fully
developed Poiseuille conditions are assumed to prevail. The study emphasizes the in�uence
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of inertia and substrate topography. Details of the free surface and �ow �eld can be captured
explicitly and in the mean sense.
The paper is organized as follows. The problem formulation and solution procedure are

given, respectively, in Section 2. Numerical assessment and results are presented in Section
3, with detailed account of the e�ects of inertia, annulus aspect ratio, substrate topography and
gravity on transient �ow behaviour and wave formation. Finally, discussion and concluding
remarks are given in Section 4.

2. PROBLEM FORMULATION AND SOLUTION PROCEDURE

The general formulation is implemented for the problem of transient axisymmetric �ow of a
�uid over a rigid surface as depicted in Figure 1. The equations and boundary conditions are
deduced for a �ow driven by an imposing pressure at the exit of the annulus.

2.1. Thin-�lm equations and boundary conditions

Consider the �ow of an incompressible �uid of density �, and viscosity �, emerging from
an annulus as depicted from Figure 1. Note that the X -axis is directed vertically downward.
Surface-tension e�ect is assumed to be negligible. The �ow may be induced by a pressure
gradient inside the annulus (Poiseuille �ow) or simply by gravity. The emphasis in this study,
however, is on the former con�guration. Let T be the time. The �uid is assumed to occupy a
domain �(T ), which is bounded by the free surface �F(T ), the wetted part of the cylindrical
substrate, �W and the annulus exit �E . Since the �ow is axisymmetric, it will be examined in
the (X; R)-plane, with R=0 coinciding with the axis of the cylindrical substrate. The shape
of the substrate is given by R=RS(X ). The velocity components and pressure are denoted by
(UX ;UR) and P, respectively. The free-surface height is given by R=E(X; T ). The reference
thickness, H , is taken as H =E(X =0; T )−RS(X =0), where X =0 coincides with the annulus
exit. The reference length is taken as RS0 =RS(X =0). Similarly to two-dimensional thin-�lm
theory, the dimensionless variables are introduced as follows:

x=
X
RS0
; z=

R− RS0
H

; t=
V
RS0

T; u=
Ux
V

(1)

w=
RS0UR
VH

; p=
H 2

�VRS0
P; h=

RS − RS0
H

; �=
E − RS0
H

where V is a reference velocity, which will be taken as the mean �ow velocity of the �uid
inside the annulus. Here (u; w) are the velocity components in the (x; z) plane. The (dimen-
sionless) shape of the free surface is then given by z= �(x; t), and that of the substrate by
z= h(x). The scaling for the pressure is chosen to ensure the balance between pressure and
viscous forces [5].
There are three important dimensionless groups that emerge in the formulation, namely, the

Reynolds number, Re, the aspect ratio, �, at the annulus exit and the Froude number:

Re=
VH 2

�RS0
; �=

H
RS0
; Fr=

V√
gRS0

(2)
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Figure 1. Schematic illustration of the axisymmetric �ow emerging from an annulus. The �gure
also shows the dimensionless notations used in the formulation.

where � is the kinematic viscosity. Following Frenkel [60], the Navier–Stokes equations are
cast in dimensionless form, and terms of O(�2) and higher are excluded. In this case, the radial
momentum equation simply states that the pressure is reduced to its hydrostatic part. Since
there is no body force acting in the radial direction, then p=p(x; t). It is also assumed that no
(wind) pressure acts on the �uid surface; see, for instance, Kriegsmann et al. who examined
pressure-driven �ow [54]. The conservation of mass and momentum reduce, respectively, to

ux + �w + wz=0 (3)

Re(ut + uux + wuz)= uzz + �uz +
Re
Fr2

(4)

where a subscript x; z or t denotes partial di�erentiation.
The evolution of the free surface is dictated by the kinematic condition:

w(x; z= �; t)= �t(x; t) + u(x; z= �; t)�x(x; t) (5)

The dynamic condition at the free surface reduces to following conditions when terms of
O(�2) and higher are excluded:

uz(x; z= �; t)=0 (6)
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The no-slip boundary condition at the substrate gives

u(x; z= h; t)=w(x; z= h; t)=0 (7)

The boundary conditions at the die exit (x=0), as well as the initial conditions will be given
below.
Equations (3) and (4) are of the ‘boundary-layer’ type, which must be solved subject to

conditions (5)–(7) in the z direction. If � is set equal to zero, the problem reduces to that
corresponding to two-dimensional �lm �ow [2; 3]. Re is sometime referred to as the modi�ed
Reynolds number [55], which is expressed in terms of the Reynolds number based on RS0
or Re= �2(VRS0=�). Although Re may be small for most polymeric �ows, it may be large
for other �uids such as liquid metals. In this work, inertia e�ects will be included to cover
the widest possible range of �ows. In the absence of inertia, the axial velocity component is
determined by simply integrating Equation (4) with respect to z, and applying the boundary
conditions. One thus recovers the parabolic and cubic pro�les similarly to fully developed �ow
between two concentric cylinders. In this case, the transverse component of velocity, w, is
not needed, although it can be obtained by integrating Equation (3). In contrast, when inertia
e�ects are included, the transverse velocity is no longer decoupled between the continuity and
the axial momentum equations. Similarly to u; w becomes an unknown in the problem. Note
that the pressure is no longer an unknown in the problem, since it vanishes everywhere and
at all time. Equations (3) and (4) become the two governing equations for the two velocity
components.
Regarding the e�ect of surface tension, an axisymmetric �uid �lm is expected to destabi-

lize, exhibiting spontaneous undulation, to �nally break into a periodic array of droplets [56].
However, instability is not expected when the �lm thickness is small. Equivalently, as Plateau
showed, only axisymmetric wavelengths larger than the circumference 2�E (see Figure 1) are
unstable [57]. Frenkel, Babchin, Levich, Shlang and Sivashinsky showed that gravity-driven
�ow can keep the �lm from rupturing (in the form of droplets) as a result of the non-linear
saturation of the instability, which is generated by the coupling between instability growth and
the driving force (gravity or pressure as in the present problem) [58]. Qu�er�e examined experi-
mentally the conditions for instability of �lm �ow down �bres (under gravity). He found that
the �lm thickness must reach a critical value that is proportional to the cube of the �bre radius
for instability to occur (see in Reference [7; Equation(4)]). In dimensionless terms, the �lm
remains stable for �3Ca¡1:4Re, where

√
gRS0 is taken as the velocity scale. The inequality

also corresponds to a growth time of instability that is smaller than the convection time. In
other words, destabilization does not occur when inertia is signi�cant, the �lm is thin and/or
surface tension e�ect is small. A similar criterion is expected to hold for pressure-driven �ow.
Later, Frenkel con�rmed Qu�er�e’s criterion and found it not to depend on �uid viscosity [59].
Thus, according to Frenkel, non-linear convective e�ects are the ones responsible for the sat-
uration of Rayleigh instability. The saturation mechanism is further interpreted by Kalliadasis
and Chang, where a detailed numerical study of �lm evolution can be found [18].

2.2. Solution procedure

Given the small thickness of the �lm, the governing equations are usually depth-averaged
across the thickness. This step is justi�ed on the basis that the �ow �eld should not vary
signi�cantly in the z direction. The presence of the non-linear convective terms in Equation (4)
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do not allow an exact averaging process. The key di�culty, of course, is the explicit z
dependence of the velocity components. Even if the x and z dependencies can be assumed to
be decoupled, with a separation of variables-type argument becoming possible, the question
remains as to the type of z dependence that u and w must have. Several types and levels
of approximations have been used in the literature, the most prominent of which being the
assumption of a similarity semi-parabolic pro�le [8; 14; 44]. Expectedly, the similarity pro�le
loses its validity when inertia is important. In this case, more formal treatments in the form
of �ow expansions in the z direction were suggested [11; 38; 48].
In this paper, the �ow �eld is expanded in terms of appropriately chosen modes in the z

direction, and the Galerkin projection method is applied to generate the equations that govern
the expansion coe�cients. The procedure is closely related to but generalizes the formulation
of Zienkiewicz an Heinrich [48] for the �ow of a thin �lm, and includes the depth-averaging
scheme as a limit case. In particular, it is assumed that u can be represented by a contribution
of some basic shape functions, �i(�), such that

u(x; z; t)=
M∑
i= 1
Ui(x; t)�i(�) (8)

where M is the number of modes, Ui(x; t) are the unknown expansion coe�cients, and
�=1=(� − h)[z − (� + h)=2] is the transformation from z ∈ [h; �] to �∈ [−1=2;+1=2]. Con-
ditions (6) and (7) impose the following restrictions on the shape functions:

�′
i(�= + 1=2)=�i(�= − 1=2)=0; ∀i∈ [1; M ] (9)

where a prime denotes di�erentiation with respect to �. The mean �ow across the depth,
U (x; t), is given by

U (x; t)=
1
�

∫ �

h
(1 + �z)u dz=

M∑
i= 1
Ui

〈
�i

(
1 +

�	
2
+ ���

)〉
(10)

where �(x; t)= �(x; t)−h(x), 	(x; t)= �(x; t)+h(x), and 〈〉 denotes the integral over �∈ [−1=2;
+1=2]. Note that the �ow rate is given by Q=U (�− h).
The shape functions are chosen to satisfy conditions (9) and the two-dimensional �ow

limit (�=0). In two-dimensional �ow, the leading shape function is taken to be parabolic in
z, in analogy to channel Poiseuille �ow [2; 26; 33]. However, in the present problem, and
in analogy to pressure-driven �ow between two concentric cylinders, two leading modes are
needed, one is parabolic and the other cubic. Without loss of generality, the shape functions
are taken to satisfy the following properties:

〈�1〉=1; 〈�i¿1〉=0 (11)

where �1 is parabolic and �2 is cubic in �. In this case, �1 = − (�2 − � − 3=4)=6 and
�2 = 8�3−3�2=−3�+1=4. The remaining modes �i¿2 are taken as orthonormal odd functions
of the Chandrasekhar type [60]. It is important to observe that, in the absence of inertia, the
exact solution is recovered through the two leading-order modes for axisymmetric �ow, and
the leading-order mode for two- dimensional �ow.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:391–419



TRANSIENT AXISYMMETRIC THIN-FILM FLOW 399

The radial velocity component is obtained by integrating Equation (3) over the interval
[h; z], to provide

w(x; z; t) =−�
M∑
i= 1
[(1− ���)Fi + ��Gi]Uix +

M∑
i= 1

[(
	x
2
+�x�

)
�i

+
(
���x�−�x − �� 	x

2

)
Fi − 2���xGi

]
Ui (12)

where Fi(	)=
∫ 	

−1=2 �i(	) d	 and Gi(	)=
∫ 	

−1=2 	�i(	) d	.
The mean radial velocity is easily determined from Equation (12), which is here introdu-

ced as

W (x; t)=
1
�

∫ �

h
(1 + �z)w dz

The evolution of the free surface is dictated by an equation that can be obtained by inte-
grating the continuity equation (3) over the interval z ∈ [h; �]. Upon applying Leibnitz’s rule
and using expressions (7)–(10), the kinematic condition (5) becomes

(1 + ��)�t = − (�x − hx)U − (�− h)Ux= −�xU −�Ux (13)

It is argued that any arbitrary number of modes can be introduced, each satisfying conditions
(9) and (11), but reasonable radial distributions can be obtained with M =2 or 3 for most
practical applications [48]. More importantly, since the aim of the present study is to examine
the in�uence of inertia and substrate topography, higher-order modes will only lead to a
slightly better accuracy, without changing the qualitative picture. These observations will
be con�rmed below when convergence and accuracy are assessed. Of course, the rate of
convergence will strongly depend on the choice of the modes. In addition, given the small
thickness of the �uid �lm, the �ow �eld is not expected to vary strongly with the height z.
An hierarchy of equations are obtained for the coe�cients Ui(x; t), when expression (8) is

substituted into the momentum equation (4), which is then multiplied by �i¿1 and integrated
over �∈ [−1=2;+1=2]. If w is eliminated by using (12), then one has

M∑
j= 1

[
〈�i�j〉Ujt −

�t
�

(
�+

1
2

)
〈�i�′

j〉Uj
]

+
M∑
j= 1

M∑
k = 1

{
[〈�i(�j�k − �′

jFk)〉 − ��〈�i�′
j(Gk − �Fk)〉]−UjUkx

+
[
��x〈�i(�Fj − 2Gj)�′

k〉 −
(
�x

�
+ �

	x
2

)
〈�iFj�′

k〉
]
UjUk

}

=
1
�Re

M∑
j= 1

[
�〈�i�′

j〉+
1
�

〈�i�′′
j 〉

]
Uj +

〈�i〉
Fr2

: (14)

The problem is completed by imposing boundary and initial conditions on Ui(x; t). The free-
surface height and mean velocity (�ow rate) are imposed at the annulus exit. In this study,
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the �uid is assumed to emerge at a normalized �ow rate, U (x=0; t)=1, and is assumed to
always adhere to the outer cylinder at the exit, so that

�(x=0; t)=1; U1(x=0; t)=
8

8 + 5�
; Ui¿1(x=0; t)=0 (15)

where h(x=0)=0 is used. The initial conditions may generally be written as

�(x; t=0)= �0(x); U1(x; t=0)=U0(x); Ui¿1(x; t=0)=0 (16)

which will be speci�ed once a particular problem is solved. Note that �0(0)=1 and U0(0)=
8=(8 + 5�). The solution of system (13) and (14), subject to conditions (15) and (16), is
obtained by using an implicit forward �nite di�erence scheme in time, combined with a
sixth-order Runge–Kutta integration in space. It is particularly convenient in this case to treat
�x explicitly in Equation (14).
Although the study focuses mainly on the development of early transient �ow, it is useful

to examine the steady-state problem for reference. Some limit �ows are now considered. In
particular, a relation between the steady-state mean component, US(x) =U (x; t→ ∞), and the
free-surface height, �S(x) ≡ (x; t→ ∞), is readily obtained by integrating Equation (13) which,
upon applying conditions (15), reads

�s(x)=
1

Us(x)
+ h(x) (17)

The expansion coe�cients for the velocity are then obtained by solving Equation (14), with
the transient terms set equal to zero, as a set of ordinary di�erential equations in x. Another
quantity of interest is the steady-state radial velocity component, WS(x) ≡ W (x; t→ ∞), which
will also be examined. In general, that is, for an arbitrary number of modes and variable
topography, the steady-state solution is di�cult to obtain analytically. However, some progress
can be made for two-dimensional �ow, and the result can be compared to that Watson [14].

2.3. Two-dimensional �ow limits

Upon setting �=0, the formulation for two-dimensional �ow can be recovered. Analytical
solutions can be obtained for some limit �ows. It will be demonstrated in the next section
that the �ow behaviour is essentially unin�uenced by higher-order modes. For axisymmetric
�ow, the two leading modes, U1(x; t) and U2(x; t), are found to be by far the most dominant
modes. In two dimensions, U1(x; t) becomes the most dominant mode. If Ui¿1(x; t) and � are
set equal to zero, one obtains a generalization of the depth-averaged equation for the mean
velocity, which reads

C1Ut − �t
�
C2U + C3UUx − �x

�
C4U 2 =

C5
�2Re

U +
1
Fr2

(18)

where C1 = 〈�21〉, C2 = 〈��1�′
1〉+ 0:5〈�1�′

1〉, C3 = 〈�31〉 − 〈�1F1�′
1〉, C4 = 〈�1F1�′

1〉 and C5 =
〈�1�′′

1 〉. Note that in this case, the mean vertical velocity component, W (x; t), is obtained
by integrating expression (12). The steady-state solution must be determined numerically.
However, if h is assumed to be independent of x, and therefore h=1, then the steady-state
velocity coe�cient and free-surface height can be obtained explicitly. If, further, gravity e�ect
is neglected, the solution can be compared to Watson’s [14]. Thus, in the limit Fr→ ∞, the
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steady-state solution of Equation (18) leads, to the following expressions for the mean velocity
and free surface:

Us(x)=
Re

Re+ Cx
; �s(x)=

C
Re
x + 1 (19)

where C= −C5=(C3 +C4)=1:944. The solution including gravity e�ect will be considered in
some detail below. Solutions (19) show that, at �nite Reynolds number, the velocity decreases
from 1 at the annulus exit, and behaves like Re=x for large x, and the free surface increases
linearly with x. In the limit Re→ ∞, US → 1, and �S → 1. In the limit Re→ 0, US → 0, and the
free surface becomes singular, behaving like 1=Re. Thus, low-inertia �uids tend to emerge from
the annulus with a sudden expansion. This important conclusion also holds for axisymmetric
�ow, and will be con�rmed in Section 3 when numerical results are presented, in the presence
and absence of gravity.
Expressions (19) are comparable to those obtained by Watson, who determined the steady-

state solution for radial and two-dimensional �ows using a similarity solution [14]. In the
work of Watson, C=�=

√
3=1:81, which is smaller than the current value based on the

leading-order mode. In contrast, the depth-averaging method gives C=2:5, corresponding to
the leading-order formulation in � [2; 8]. It may thus be deduced that the current formulation
(at least the steady-state solution) predicts a free-surface pro�le between that based on Wat-
son’s similarity solution and the depth-averaging pro�le. The current formulation thus gives
an accuracy on the order of 8%, while conventional formulation based on the depth-averaging
process gives a 30% error. The addition of higher-order modes leads even to a better accu-
racy. In fact, the inclusion of the second (cubic) mode alone leads to C=1:812, which is in
excellent agreement with Watson’s similarity solution. The inclusion of the third- and higher-
order modes leads sensibly to the same result (see also below). The close agreement with
the similarity solution is a re�ection of the robustness and reliability of the present approach,
which is based on the Galerkin projection method. In fact, the depth-averaging formulation
may be regarded as a special case of the present procedure, where only one mode is retained,
but more importantly, a weight function equal to one is used instead of the quadratic poly-
nomial, �1.

3. DISCUSSION AND RESULTS

The formulation and numerical implementation above are now applied to examine the early
transients as the �uid emerges from the annulus, as schematically illustrated in Figure 1. The
in�uence of inertia will be examined �rst. The in�uence of aspect ratio, substrate topography,
as well as gravity, will then be investigated in some detail. In all calculations below, the
domain of the �uid is assumed to extend from x=0 to x→ ∞, but the domain of computation
will be restricted to x∈ [0; 10], unless otherwise speci�ed. Appropriate initial conditions are
needed for the solution, namely, �0(x) and U0(x). Typically, in practice, at t¡0, there may
be no �uid covering the substrate; all the �uid is still inside the annulus. At t=0, the �uid
begins to �ow, with a (mean) velocity that is highest at x=0. Theoretically, initial non-zero
distributions in the surface height, �(t=0; x), and mean velocity, U (t=0; x), are needed to
start the solution of the initial-value problem. Step functions in x may be envisaged. However,
such initial distributions are discontinuous with respect to x. In most results in this study, the
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initial free surface and velocity pro�les are taken, respectively, as

�0(x) =

{
1− 0:8 sin(�x=20); 06x610

0:2; x¿10
(20)

U0(x) =

{
1− sin(�x=20); 06x610

0; x¿10

Other initial conditions will also be considered. A similar single-harmonic initial condition
for the free-surface shape was also used by Kalliadasis and Chang [18]. Moriarty et al.
examined the gravity-induced deformation of a �uid occupying initially a parabolic domain
(drop) with a constant thin �lm as tail [29]. In this study, conditions (20) are assumed for
a straight substrate, and for a substrate of variable topography. These conditions correspond
to an in�nite �uid layer with a thickness that decays from one at x=0, reaching 0.2 at
x=10 and remaining 0.2 for x¿10. The velocity is taken to diminish from one at x=0, but
vanishes for x¿10. These conditions also satisfy Equations (15). As will be discussed below,
the in�uence of the initial conditions on the ensuing �ow can be signi�cant. Finally, the
main parameters controlling the accuracy of the solution are the time increment, �t, and the
number of modes, M . These parameters were varied to cover the range �t ∈ [0:0125; 0:1] and
M ∈ [1; 4]. In general, convergence is reached for �t¡0:025 and M¡3. Another criterion for
accuracy that is used is conservation of mass (volume) between the amount of �uid emerging
from the annulus and that deployed on the rigid substrate. Calculations show that the error in
mass is generally to within 1%. The tolerance on the Runge–Kutta scheme is set as 10−5.

3.1. In�uence of inertia

Consider now the general �ow response for a �uid at moderately high Reynolds number.
It is important to simultaneously assess �rst the convergence and accuracy of the numerical
solution. For this, consider the �ow at Re=100, when non-linear e�ects are signi�cant. The
annulus aspect ratio is �xed at �=0:1, and gravity is assumed to be negligible (Fr→ ∞). In
this section, the substrate is straight (h=0). The �ow behaviour is examined over a period of
4 time units. It is generally found that interesting dynamics arise for t¡4, without pronounced
curvature e�ects manifesting themselves at the free surface. The behaviour in Figure 2 typically
illustrates the response in the early stages for a �ow with high-inertia. The evolution of the
free surface is shown in Figure 2(a) for the projection of the �ow in the (x; z) plane. The �gure
shows the free surface at equal intervals of 0.4 time units, including the initial pro�le (t=0).
The steady-state pro�le is also shown in the �gure (dashed curve), which exhibits a linear
growth with x (in accord with Equation (19) for two-dimensional �ow). A three-dimensional
perspective is shown in Figure 3, at two stages t=1 and 4. Figure 2 shows that there is a
strong radial �ow that leads to the formation of a solitary wave, similarly to that encountered
under steady-state conditions for gravity-driven �ow [37]. Figure 2(a) shows that after t=4,
the trailing edge of the wave (x¡3) has already attained the steady-state shape. There is
an accumulation of �uid in the radial direction, the origin of which becomes clearer as the
velocity coe�cients are examined. As will be seen below, this build-up of �uid is typical and
is strongly in�uenced by inertia. The stagnation of the �lm height at x=10 originates from
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Figure 2. Transient �ow response with high inertia in the absence of gravity (Fr→ ∞), for Re=100
(�=0:1), over a straight cylindrical substrate. The �gure shows (a) the evolution of the free surface,
(b) mean axial and (c) radial velocity components, at equal intervals over a period of 4 time units,

including the initial conditions (t=0). Also shown is the steady-state pro�le (dashed line).

Figure 3. Three-dimensional perspective of high-inertia �lm �ow, Re=100 and �=0:1, for a �ow over
a straight cylindrical substrate, at two stages, t=1 and 4 (Fr→ ∞).
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Figure 4. Flow �eld and contours of the radial velocity component, w(x; z; t=4) for high-inertia �ow,
Re=100 (�=0:1), for a straight cylindrical substrate (Fr→ ∞).

the initial conditions (20) used (see below). The corresponding pro�les for the mean velocity
components in the axial and radial directions, U (x; t) and W (x; t), are shown, respectively,
in Figures 2(b) and 2(c). The steady-state velocity distributions are also shown, which are
again linear over the range of �uid shown (dashed curves). In the early stages, U decreases
almost linearly as the �uid emerges from the annulus, to then asymptotically vanish as the
�uid approaches the straight end of the free surface at x=10. With time, however, the �ow
exhibits a sharp drop as the wave steepens. This drop is a re�ection of strong elongational
�ow or normal stress as in converging/diverging �ow. There is simultaneously a strong radial
normal stress as Figure 2(c) indicates. The radial �ow increases overall in strength as the �uid
moves downstream, and, unlike the axial �ow, reaches a maximum at the crest of the surface
wave. As the free surface deforms further, W exhibits a maximum at the tail of the wave, a
minimum at the crest, a relatively weak maximum ahead of the crest, to then asymptotically
vanish downstream. There is a considerable gain in strength in radial �ow with time, reaching
one third of the axial �ow. However, the steady radial �ow is weak and essentially constant
over the �uid domain. The signi�cance of the radial �ow is further appreciated from Figure 4,
which depicts the �ow �eld and the contours of the radial velocity component, w(x; z; t=4),
at an advanced stage. The �ow �eld indicates clearly the sudden change in direction that �ow
takes below the crest (5:5¡x¡6), where a strong radial �ow develops near the substrate,
along with a strong inward �ow below the wave crest. It is clear from Figures 2(c) and 4
that the radial �ow is not negligible as the long-wave approximation suggests [38].
There are two remarkable features in the evolution of the �lm pro�le shown in Figure 2(a).

One is the continuous build-up and propagation of the wave front, and second the steady-state
swept by the tail of the wave front. The question then arises as to whether the steady-state
pro�le is ever reached over the long time. The current thin-�lm results, subject to the chosen
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Figure 5. Transient �ow response with high inertia in the absence of gravity (Fr→ ∞), for
Re=100 (�=0:1), over a straight cylindrical substrate. Uniform initial conditions are used. The
�gure shows (a) the evolution of the free surface, (b) mean axial and (c) radial velocity com-
ponents, at equal intervals over a period of 10 time units, including the initial conditions (t=0).

Also shown is the steady-state pro�le (dashed line).

initial and boundary conditions, and in the absence of surface tension, clearly indicate that the
steady pro�le will simply never be reached. In reality, some additional mechanism is needed to
halt the wave growth, such as surface tension and/or gravity e�ects [18]. Pronounced growth
will also result in the breakdown of the thin-�lm assumption.
The �uid build-up illustrated in Figure 2 can be completely annihilated for some other initial

conditions. Uniform initial surface height and Poiseuille pro�le for the streamwise velocity
are such conditions. In this case, �(x; t=0)=1 and U (x; t=0)=8=(8 + 5�). Figure 5 shows
the response for Re=100 and �=0:1. The pro�les are shown for a duration of 10 time units,
at equal intervals. There are two striking di�erences in comparison to Figure 2. The �rst
di�erence is the lack of �uid build-up or elevation of the free surface, despite the formation
and propagation of a surface wave. The surface rises with time in Figure 5(a), with the
wave tail tracing the steady state, but the transient surface height is always below the steady
level. The second important di�erence with the situation in Figure 2(a) is the stability of the
steady state. The initial disturbance is evolving monotonically toward the steady free-surface
pro�le. The streamwise velocity (Figure 5(b)) as well as the depthwise velocity decreases
monotonically with position, reaching a constant level. It is interesting to note that in this
case, W does not exhibit a maximum as in Figure 2(c). It is important to observe that the
pro�les in Figure 6 indicate that the steady state is stable to the initial perturbation. Inertia
is found to have a signi�cant in�uence on the �ow, the shape of the free surface, the wave
formation and speed of propagation. In case of low-inertia �ow, a considerable steepening of
the wave occurs, with a signi�cant accumulation of the �uid near the annulus exit. Unlike
high-inertia �ow (Figure 2), the wave tends to remain relatively stationary. The steady-state
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Figure 6. In�uence of annulus aspect ratio, for the range �∈ [0; 0:5], on the shape of the
free surface at t=4, for high-inertia �ow (Re=100). The steady states are included (Fr→ ∞).

The cylindrical substrate is assumed to be straight.

pro�le indicates clearly the di�culty of the �uid to move forward. This is of course expected
for a highly viscous �uid. The �ow is halted near the annulus exit, with the streamwise velocity
dropping sharply not far from x=0 (see Reference [41] for two-dimensional coating case).
The rise in free-surface level is directly due to normal stress e�ect. The �ow behaves similarly
to that through a sudden expansion; shear e�ects are dominated by elongational e�ects. This
is particularly evident from solution (19), which shows that the steady-state streamwise �ow
is essentially annihilated for creeping �ow (Re→ 0), resulting in 90◦ expansion of the �lm
(�S → ∞) near the annulus. Calculations show that the �lm generally grows like 1=Re (for
two-dimensional �ow) for both steady and unsteady states. Expressions (19) indicate that
elongational e�ect behaves like 1=x2 for small Re. As a result, there is a considerable increase
in radial �ow as well. The extreme exhibited by W in Figure 2(c) are accentuated and become
more localized as viscous e�ects become dominant. The radial velocity component cannot be
neglected as is done in some of the work in the literature [48], especially for low-inertia �ow.
Figure 5 indicates a higher degree of symmetry that is reached near the crest of the wave
at low Re (compare with Figure 2(a)). At low Re, the symmetry-breaking convective term
UUX is dominated by the symmetric di�usive terms.

3.2. In�uence of annulus aspect ratio

The in�uence of the aspect ratio is illustrated for a moderately high-inertia �ow (Re=100)
for a straight cylindrical substrate. Gravity is still assumed to be negligible. The response of
the free-surface shape at t=4 is shown in Figure 6 for the range �∈ [0; 0:5]. It is important
to remark that this range of values for the aspect ratio exceeds the range of validity of the
thin-�lm approximation, where terms of O(�2) are assumed to be negligible. Moreover, and
as discussed earlier, thick �lms are likely to become unstable. However, this wide range is
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Figure 7. In�uence of annulus aspect ratio, for the range �∈ [0; 0:5], on the evolution of the
crest height, �max(t), and corresponding position, xm(t), for high-inertia �ow (Re=100, Fr→ ∞).

The cylindrical substrate is assumed to be straight.

used here and in subsequent �gures only for clarity of presentation. The results shown may
even be quantitatively inaccurate, and are important as they point to the qualitative trend
expected when more realistic values of � are used. The in�uence of the terms neglected in
the momentum conservation equations, leading to Equation (4), is assessed for simple gravity-
driven one-dimensional �ow. In this case, the exact solution reads

u(z)= − Re
2� Fr2

[
�
2
z2 + z − (�+ 1)2

�
ln(�z + 1)

]
(21)

which should be contrasted with the solution of Equation (4), namely

u(z)= − Re
� Fr2

[
z +

e�

�
(e−�z − 1)

]
(22)

It is found that the maximum error generated from using (22) is 0.2% for �=0:1 and 3.5%
for �=0:5, which indicates that the results in Figure 6 may be quantitatively reasonable. The
steady-state pro�les in the �gure appear to be unin�uenced by aspect ratio. Moreover, the
mean axial �ow is not expected to be signi�cantly a�ected by �, according to Equation (17).
It is clear from the �gure that the substrate curvature tends to prohibit wave formation. To a
lesser extent, the wave propagation is also delayed for the higher aspect ratio. The crest height
decreases relatively sharply as � increases from zero (that is, from the two-dimensional limit).
The coating of a wire-like substrate is thus easier to achieve than that of a thick cylinder.
This is also con�rmed by inspecting the �ow in the axial and radial directions (not shown).
Unlike the axial �ow, the radial �ow experiences a drastic drop as � increases.
The in�uence of annulus aspect ratio is also signi�cant on the crest height and wave speed.

Figure 7 displays the evolution of �max(t) and corresponding position, xm(t), with time. For
two-dimensional �ow, xm is linear with t, and the wave advances at a constant speed, which
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Figure 8. In�uence of annulus aspect ratio, for the range �∈ [0; 0:5], on the steady free-surface pro�le
and corresponding mean velocity, for low-inertia �ow (Re=4, Fr→ ∞).

is equal to 1.36 in this case. The crest height increases at a rate that accelerates with time.
As � increases from zero, the wave speed tends to be smaller upon inception, but eventu-
ally approaches the same constant level (1.36), corresponding to two-dimensional �ow, for
large t.
It is interesting to observe in conclusion that although the �uid exhibits a signi�cant drop in

surface height for a cylinder of smaller diameter, the wave speed is the same (asymptotically)
regardless of the annulus aspect ratio. It is �nally observed from Figure 7 that, at a given time
t, the crest height increases exponentially with �, while its position increases linearly with �.
The rate of front advancement depicted in the �gure may be compared to the rate of radial
spreading examined by Wilson et al., who studied the e�ect of slip coe�cient. Obviously, any
comparison (though remote) with the current results should be made with the case �=0 [13].
The results of Wilson et al. suggest that for the smallest slip coe�cient considered, the rate of
spreading approaches a linear spread similarly to the curve �=0 in Figure 8. The absence of
in�uence of the annulus aspect ratio on the steady-state �lm pro�le is somewhat perplexing,
and yet the strong in�uence of � on the unsteady pro�les is clearly present as indicated by
Figure 6. The e�ect of � on the rate of change of � can be, to some extent, assessed from
Equation (13), which predicts the rate of growth of the �lm should get smaller as the annulus
ratio is increased; this is clearly the case in Figures 6 and 7. In contrast, for steady-state �ow
the relation between U and � does not depend on �, as Equation (17) suggests. If, further,
inertia is dominant, the only term where � occurs is due to curvature e�ect in the continuity
equation (3), which is not expected to be signi�cant since the radial velocity component is
relatively weak throughout the �lm. If, however, inertia is not dominant, then the in�uence of
the annulus ratio will be re�ected more signi�cantly through the curvature di�usive term, �uz,
in Equation (4). This term is a re�ection of the shear stress, which is generally signi�cant,
especially near the substrate. Figure 8 displays the signi�cant in�uence of the annulus ratio
on the steady-state surface pro�les and corresponding velocity distributions for Re=4. In
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Figure 9. In�uence of annulus aspect ratio, for the range �∈ [0; 0:5], on the time, tS , an initially uniform
�lm takes to reach steady-state conditions (Fr→ ∞).

particular, the �S pro�les show that the �lm thickness decreases from the two-dimensional
linear growth as � increases. The �lm thickness as well as the mean axial velocity tends to
level o� downstream for large �. The �gure thus indicates that wires with relatively smaller
diameter are easier to coat.
Finally, it was observed from Figure 5 that the steady state is stable to a perturbation

corresponding to uniform initial conditions. This means that the steady state is eventually
reached after some time, which depends on the various geometrical and �ow parameters.
Figure 9 shows the in�uence of the aspect ratio on the time, tS , the �ow takes to reach steady
state. Steady state is assumed to be reached when the evolving free surface is within 0.01%.
The �gure shows the behaviour of tS as function of Re for �∈ [0; 0:5], and it is found that tS
decreases monotonically with Re, slowly for small Re and eventually leveling o�. Thus, for
a moderately high-inertia �uid, tS becomes independent of the Reynolds number. The �gure
also indicates that tS increases with �, almost linearly at large Re. The curves may appear to
be similar, but in fact are not.

3.3. In�uence of substrate topography

The in�uence of substrate topography is examined for step changes in the bottom pro�le.
The steps, however, must be smooth given the thin-�lm hypothesis, which asserts, in addition
to the small �lm thickness, that the substrate and �lm geometry must be continuous. A
suitable substrate pro�le is taken from Reference [30], which is rewritten here in dimensionless
form as

h(x)=A
[
1
2
+
1
�
tan−1

(
x − x0



)]
(23)

where A is the amplitude of the step, 
 is the slope, x0 is the location of the step. In this
work, x0 = 4 and 
=0:5. It is found that both the step-up and step-down disturbances have a
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Figure 10. In�uence of step amplitude on the transient �ow response with high inertia in the absence
of gravity (Fr→ ∞), for Re=100 (�=0:1), over a substrate with step-up. The �gure shows the evo-
lution of the free surface at equal intervals over a period of 10 time units for di�erent amplitudes,

including the steady-state pro�le (dashed line).

signi�cant and di�erent in�uence on the �ow. In this section, uniform initial conditions will
be assumed. Thus, the initial free surface is given by �(x; t=0)=1.
Consider �rst the in�uence of the step-up pro�le. The evolution of the free surface for a

high-inertia �ow is shown for three step amplitudes in Figure 10, corresponding to A=0:05,
0.1 and 0.3. The Reynolds number is �xed to Re=100 and Fr→ ∞. The steady-state pro�les
are included (dashed curve). The substrate topography is not shown. The pro�les in Figure 10
are plotted at equal intervals over 10 time units, and should be compared to those in Figure 5
for a straight cylindrical substrate. The presence of the step causes the surface wave to exhibit
a secondary wave that is detached from the steady pro�le, and moves downstream from the
primary wave. The tail and crest of the primary wave follow closely the steady pro�le. As the
step increases, the secondary wave steepens, leading to the formation of a square wave. More
importantly, the steady state appears to remain stable with respect to the initial (uniform)
disturbance despite the presence of a perturbation in the substrate.
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Figure 11. In�uence of step amplitude on the transient �ow response with high inertia in the absence
of gravity (Fr→ ∞), for Re=100 (�=0:1), over a substrate with step-down. The �gure shows the
evolution of the free surface at equal intervals over a period of 10 time units for di�erent amplitudes,

including the steady-state pro�le (dashed line).

The stability of the steady state is not unconditional to the type of perturbation in the
substrate. This is clearly illustrated in the case of a step-down in the substrate. The resulting
�ow behaviour is shown in Figure 11, where the pro�les are depicted for the same parameters
as in Figure 10. In this case, the secondary wave travelling downstream grows signi�cantly
with step amplitude, and eventually exceeds the steady-state level, re�ecting �uid build-up
with time, similarly to the �ow in Figure 2. Clearly in this case, the steady-state �ow is
unstable although the same (uniform) initial conditions are used as for the step-up geometry.
The steady-state pro�les in Figures 10 and 11 re�ect closely the shape of the substrate,

showing a free-surface elevation entirely commensurate with that of the step. This response
is reminiscent of the two-dimensional results reported by Kalliadasis et al. [30], who ne-
glected inertia but included surface tension e�ects, which led to the formation of ridges and
depressions in the vicinity of the step. These, however, are usually localized with little over-
all in�uence on the �lm pro�le. Moreover, surface tension does not seem to strongly deviate
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Figure 12. In�uence of gravity on the steady-state pro�les of the free surface, for Re=100 and �=0:1.
The curves are shown for the range Fr ∈ [0:1;∞].

the shape of the �lm surface from that of the disturbance. Figures 10 and 11 of Kalliadasis
et al. show that this is the case for both mounds and trenches [30]. Figure 12 illustrates the
in�uence of inertia on the steady-state shape of the free surface for both a step-up and a
step-down in the substrate.

3.4. In�uence of gravity

Unlike two-dimensional �ow problems commonly found in the literature, in this case, gravity
acts in the direction of axial �ow. In fact, this makes the gravity term easier to handle as
it is decoupled from the surface height. However, the e�ect of gravity can be signi�cant
even though it is present as a constant source term in Equation (14). Some insight may be
preliminarily gained by examining the two-dimensional steady-state �ow. In this case, the
equation for the free-surface pro�le becomes

d�s
dx
=
C
Re

(
1− Re

3Fr2
�3s

)
(24)

The presence of gravity will thus, in general, force the free surface to deviate from the linear
form given by Equation (19). At a critical Froude number, Frc =

√
Re=3, the slope at the

annulus exit is zero, and remains zero for x¿0. In this case, viscous and gravity forces
are in balance. For Fr¿Frc(Fr¡Frc), the surface slope at the exit is positive (negative),
and decreases (increases) with x until it vanishes at a certain position, x= x∗, and the �lm
thickness remains constant further downstream (x¿x∗). The position x∗ corresponds to a free
surface level �∗

s ≡ �s(x∗)= 3
√
3Fr2=Re.

The situation turned out, expectedly, to be similar for axisymmetric �ow, especially when
the aspect ratio, �, is very small. The in�uence of gravity is thus assessed numerically by vary-
ing the Froude number and keeping the other parameters �xed. Figure 13 illustrates typically
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Figure 13. Evolution of the free surface with time for high-inertia �ow, Re=100 (�=0:1),
for a �at substrate, in the presence of strong gravity e�ect (Fr=2). The �gure shows the
free surfaces at equal intervals over a period of 4 time units, including the initial surface.

The steady-state pro�le (dashed line) is also shown.

the in�uence of gravity on the steady-state free-surface pro�les for the range Fr ∈ [0:1;∞],
with the Reynolds number �xed at Re=100, and the aspect ratio at �=0:1. Here h=0. It
is recalled that in the absence of gravity (Fr→ ∞), �s(x) grows linearly with x (at least for
two-dimensional �ow). The critical Froude number is very close to Frc = 6, which is slightly
higher than that corresponding to two-dimensional �ow (Frc = 5:77). When gravity e�ect is
dominant, �s decreases similarly to the prediction of Equation (24). In this case, the critical
surface level is estimated from two-dimensional �ow to be approximately �∗

s =
3
√
0:03Fr2. The

surface level for Fr=0:1 is expected to reach constant level when �s reaches approximately
0.067, which is very close to the constant level reached by the curve Fr=0:1 in Figure 12.
The in�uence of gravity is even more signi�cant under transient conditions. The �ow re-

sponse is typically illustrated in Figure 13 for Re=100, �=0:1 and Fr=2. In contrast to the
�ow in the absence of gravity (Figure 2(a)), the free surface begins to immediately collapse
towards the steady-state level upon the �uid exiting the annulus. However, the maximum in
free surface remains signi�cantly higher above the steady-state level than when gravity is
absent. Interestingly, �max(t) does not grow as fast as in Figure 2(a). In fact, Figure 14 shows
that the growth in the surface crest height is linear with time. The situation is similar to
that reported by Moriarty et al. for a �uid drop deforming under gravity [29]. The draining
drop tends to deform signi�cantly, while the drop tip remains essentially at the same height
(see Figures 2 and 12 in Reference [29]). For a �ow with weaker inertia, the arguments for
two-dimensional �ow suggest that the �lm reaches a constant level earlier. Figure 14 displays
the �lm evolution for Re=4, Fr=2 and �=0:1. It is clear, upon comparison with Figure
5, that gravity, like inertia, makes the coating process achievable. Gravity tends to be most
in�uential far downstream from the annulus exit.
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Figure 14. Evolution of the free surface with time for low-inertia �ow, Re=4 (�=0:1),
for a �at substrate, in the presence of strong gravity e�ect (Fr=2). The �gure shows the
free surfaces at equal intervals over a period of 4 time units, including the initial surface.

The steady-state pro�le (dashed line) is also shown.

The in�uence of gravity is also signi�cant for a substrate of variable shape. Here again
the cases of a step-up and a step-down will be considered for a �ow with uniform initial
conditions. Figures 15 and 16 shows the in�uence of gravity for both geometries for the
range Fr ∈ [1;∞]. The in�uence of gravity is found to be signi�cant for both transient and
steady �ows. For a step-up (Figure 15), the steady pro�les deviate gradually from the substrate
geometry as gravity e�ect increases. In particular, the steady pro�le exhibits a pronounced
thinning of the �lm near the annulus exit with gravity. Simultaneously, the transient pro�les
shift from below to above the steady state. For a step-down (Figure 16), the steady �lm
thickness decreases with gravity, with the surface becoming smoother. The �gure indicates
that the secondary wave decreases in amplitude, re�ecting a stabilization of the steady state.

4. CONCLUSION

Pressure-driven axisymmetric �ow of a thin �uid �lm, emerging from an annulus, is exam-
ined in this study. Early transient behaviour is emphasized. The initial conditions, annulus
aspect ratio, substrate topography, gravity, as well as inertia e�ects are investigated in some
detail. Although the focus of the study is mainly on transient behaviour, the steady-state
�ow is also examined for reference. The �ow is governed by the thin-�lm equations of the
‘boundary-layer’ type, which are solved by expanding the �ow �eld in orthonormal modes
over the depth. The Galerkin projection method is applied to generate the equations that gov-
ern the expansion coe�cients. The method generalizes and improves the approach proposed
earlier by Zienkiewicz and Heinrich [48]. It is found that reasonable convergence is generally
achieved when less than three or four modes are included. The formulation reduces to the
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Figure 15. In�uence of gravity on the transient �ow response with high inertia for Re=100 (�=0:1),
over a substrate with step-up. The �gure shows the evolution of the free surface at equal intervals over

a period of 10 time units, including the steady-state pro�le (dashed line), for Fr ∈ [1;∞).

depth-averaging procedure in two-dimensions when only the leading-order mode, with a weight
function equal to one, is used. It is shown that, in the limit of two-dimensional steady �ow,
there is excellent agreement with the similarity solution of Watson [14]. Only two modes
are required to reach an agreement to the third decimal. The improvement of the proposed
approach over the conventional depth-averaging technique is mainly owing to the use of ap-
propriate weighting functions (to minimize the residual error), and, to a lesser, to the choice
of orthonormal modes. In this work, Chandrasekhar functions are used, but other shape func-
tions, such as simple polynomials or trigonometric modes, appear to lead essentially to the
same level of accuracy [41].
Initial conditions are found to have a signi�cant e�ect on the �ow. Non-uniform conditions

on the streamwise velocity and �lm surface lead unavoidably to �uid build-up upon exiting
the annulus, leading to the formation of a solitary wave that propagates downstream at a
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Figure 16. In�uence of gravity on the transient �ow response with high inertia for Re=100 (�=0:1),
over a substrate with step-down. The �gure shows the evolution of the free surface at equal intervals

over a period of 10 time units, including the steady-state pro�le (dashed line), for Fr ∈ [1;∞).

rate that depends strongly on inertia. Typically, the �ow exhibits a signi�cant drop in axial
velocity, accompanied by a surge in radial velocity, at the wave front. Elongational �ow
is clearly important in this case, in addition to the signi�cant shearing that is expected in
thin-�lm �ow. While a high-inertia �uid propagates downstream, exhibiting a wave of crest
height on the order of the substrate depth (Figure 2), a low-inertia �uid tends to stagnate
near the annulus exit, exhibiting a standing wave with a crest height that grows with time,
and a base width on the order of cylindrical substrate radius. The radial �ow is found to
be signi�cant for all �ow con�gurations considered, particularly under transient conditions.
Hence, for strongly transient �ow, Benney’s long-wave approximation becomes inadequate,
even when Re is small [42]. This clearly contrasts what may be suggested in the literature
[38]. Note, however, that for steady state, radial �ow is found to be insigni�cant for a straight
cylindrical substrate. This is of course expected as elongational e�ects are negligible, at least
when gravity is negligible.
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The in�uence of initial conditions on the subsequent motion is found to be important. In
this work, the �uid domain is assumed to correspond to an initial �uid layer, with thickness
decreasing downstream until it reaches a constant level. The initial velocity is assumed to be
strongest at the annulus exit, to decay downstream and vanish when the �lm reaches constant
thickness. In this case, an asymmetric wave forms, which steepens as it travels downstream.
While the tail of the wave reaches steady state, the wave front continues to steepen with wave
growth. Under these conditions, steady-state conditions are clearly never reached. However,
the �lm assumption is bound to break down with further growth, and surface tension e�ects,
which may be negligible initially, become eventually important. Other initial conditions are
also examined, showing similar behaviour. In contrast, the transient response is found to be
stable for uniform initial conditions in mean velocity and �lm pro�le (Figure 5). In this
case, there is no �uid build-up, and the wave is always located beneath the steady state.
For a variable substrate, the steady state may not be stable to uniform initial conditions (see
below).
The e�ect of geometry is examined by varying the annulus aspect ratio, �, and substrate

topography. It is found that, for steady state, high-inertia �ow responds very closely to two-
dimensional �ow (see also Reference [14]). This is particularly true for the shape of the �lm.
Thus, the �nal coating thickness of large- and small-diameter wires is similar when inertia
is signi�cant. However, for small inertia, the (steady) �lm thickness decreases linearly with
�, reaching a constant (asymptotic) level far downstream (Figure 5). Transient behaviour is
signi�cantly reduced with �, for high- and low-inertia �ows (Figures 6–8). Two types of per-
turbations, a step-up, and a step-down, are used to study the in�uence of substrate topography.
The results are contrasted with those of Kalliadasis et al. for steady �ow [30]. Inertia, step
amplitude, and initial conditions are found to have a signi�cant in�uence on the response of
the �ow in the presence of the perturbations. It is observed that the �ow of a high-inertia
�uid over a step-down exhibits the formation of a secondary wave that moves upstream of
the primary wave (Figure 11). While the steady state appears to be always stable to uni-
form initial �lm for a step-up (Figure 10), it becomes unstable for high-amplitude step-down
(Figure 11).
Finally, the in�uence of gravity is examined for straight and variable substrates. The steady-

state �lm thickness changes from a linear growth with axial position when gravity is weak,
to a sharp drop near the annulus exit at small Fr value. The situation is very similar to
two-dimensional �ow, which indicates that the thickness reaches a constant level equal to
3
√
3Fr2=Re far downstream from the annulus exit. It is also found that, at a critical Froude
number, Frc =

√
Re=3, the �lm thickness remains the same at any position (see Figure 12).

In this case, viscous and gravity e�ects are in complete balance. Gravity tends, as expected
to precipitate the �ow, attenuating wave formation. In this case, the wave grows linearly with
position and time, as opposed to the much faster growth rate experienced in the absence of
gravity (compare Figures 2 and 13). Gravity is found to have a stabilizing in�uence for a
step-down substrate (Figure 16).
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